Worksheet -- Hess' Law

Hess' Law

Hess' Law states that the heat evolved in a given process can be expressed as the sum of the heats of several processes that, when added, yield the process of interest. In other words, enthalpy is a state function. If the reactants and products are the same, it doesn't matter how the reaction is carried out.

- When you reverse a reaction, change the sign of ΔH .
- If you modify the coefficients of a reaction, multiply ∆H by the same factor.
- Carbon tetrachloride, CCl₄, an organic solvent is prepared by the reaction of chlorine gas, Cl₂, with CS₂.
 Using Hess' Law, determine the heat of reaction (ΔH) for the reaction:

$$CS_2(I) + 3 CI_2(g) \rightarrow CCI_4(I) + S_2CI_2(I)$$

given these data:

i.
$$CS_2(I) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$$

ii. $S(s) + \frac{1}{2} CI_2(g) \rightarrow \frac{1}{2} S_2 CI_2(I)$

iii. $C(gr) + 2 CI_2(g) \rightarrow CCI_4(I)$

iv. $S(s) + O_2(g) \rightarrow SO_2(g)$

v. $C(gr) + O_2(g) \rightarrow CO_2(g)$

$$CS_2(I) + \frac{3}{2} S_2(I_2) \rightarrow CO_2(g)$$

$$CS_2(I) + \frac{3}{2} S_2(I_2) \rightarrow CO_2(g)$$

$$CS_2(I) + \frac{3}{2} S_2(I_2) \rightarrow CO_2(g)$$

$$CCI_4(I)$$

$$2(S_2(I) + \frac{3}{2} S_2(I_2) \rightarrow \frac{1}{2} S_2(I_2, I_2)$$

Heats of formation

$$CO_2(I) + \frac{3}{2} S_2(I_2, I_2)$$

$$CO_2(I) + \frac{3}{2} S_2(I_2, I_2)$$

$$CCI_4(I) + \frac{3}{2} S_2(I_2, I_2)$$

$$CI_4(I) + \frac{3}{2} S_2(I_2, I_2)$$

Another way to solve for ΔH_{rxn} is to use the **standard enthalpies of formation**, ΔH_{f}^{o} .

A formation reaction is one in which 1 mole of product is formed from elements in their standard states.

The heat of formation of elements in their standard state is zero.

2. Which of previous (i - v) is/are formation reactions?

The standard heats of formation can be used to determine the heat of reaction as follows:

$\Delta H_{rxn} = \Sigma \Delta H_f^o$ products - $\Sigma \Delta H_f^o$ products

3. Using the standard heats of formation, ΔH^{o}_{f} , shown below, to calculate the ΔH of the following reaction:

$$2 F_{2}(g) + 2 H_{2}O(I) \rightarrow 4 HF(g) + O_{2}(g) \qquad \Delta H^{\circ}_{f}(kJ)$$

$$\Delta H - 4 \Delta H^{\circ}_{f} HF - 2 \Delta H^{\circ}_{f} H_{c}O(I) \qquad H_{2}O -286 \\ HF -267$$

$$\Delta H - 4 (-267) - 2 (-288) - -491 LJ$$

$$\Delta H^{\circ}_{f} f_{2} = \Delta H^{\circ}_{f} O_{2} = 0$$

4. Write the formation reaction for C₂H₆ (g)

5. Find the heat of formation of C₂H₆ (g) from the following data:

$$\frac{2C + 3H_{1}}{9} \Rightarrow \frac{C_{1}H_{2}}{120}$$

$$\frac{1}{12} \left(4 + \frac{1}{120} + \frac{1}{120}\right) = \frac{1}{120} \left(1 + \frac{1}{120}\right) = \frac{1}{120} \left($$

Bond energies

In many cases, the heats of formation and heats of reaction are not tabulated. This is especially true for newly synthesized compounds. Under these circumstances, **approximate** values for ΔH reaction can be calculated using **bond energies**.

Bond energies represent the energy required to break a given type of bond. Bond breakage is endothermic, so all bond energies are positive. Bond breakage is endothermic (+) and bond formation is exothermic (-).

These can be used as follows:

$\Delta H_{rxn} = \Sigma$ bonds broken - Σ bonds formed

6. Use the reaction and ΔH from question 3 to calculate the average bond energy (in kJ/mol) for an H-F bond, given the following bond energies:

$$2F_2 + 2H_{10} \rightarrow 4HF + O_2$$
 bond bond energy

$$\Delta H = -496 = 2(158) + 4(40) - 4(H-F) - 499$$
 H-H 436 kJ

$$O-H$$
 460 kJ

$$F-F$$
 156 kJ

$$O-O$$
 142 kJ

$$O-O$$
 499 kJ

7. In the Krebs cycle, fumaric acid is hydrated to malic acid. Calculate the heat of reaction in kJ/mol, using the approximate bond energies and reaction shown below.

OH = (463)+(614)-(413)-(358)-(348) = -42 kT