Unit 1: Nature of Chemistry

Content Outline: Math - The Language of Science (1.4) - Part 2

I. Scientific Notation

A. This is essentially a way of writing numbers with large amounts of digits in a condensed form.
B. Only significant figures are written when using Scientific Notation.
C. It is also based on the powers of 10; but as exponents.

1. Exponents are whole numbers written in superscript to represent a specific number of places the decimal point has moved.
a. If the exponent is a positive whole number, the decimal point has been moved to the left. This would be a larger than 1 number.
b. If the exponent is a negative whole number, the decimal point has been moved to the right. This would be a smaller than 1 number.
D. Numbers written in scientific notation have a basic format:
M.N X $10^{Z} \quad$; M = First Significant digit in the number (always followed by the decimal point)
$\mathrm{N}=$ Second Significant digit in the number
$\mathrm{Z}=\mathrm{a}$ whole number representing the number of places the decimal point has moved.
For example: $1,000,000.0 \mathrm{~g}=1.0 \mathrm{X} 10^{6} \mathrm{~g}$

$$
\begin{aligned}
& 250.0 \mathrm{~L}=2.5 \times 10^{2} \mathrm{~L} \\
& 0.000465 \mathrm{~m}=4.65 \mathrm{X} 10^{-4} \mathrm{~m}
\end{aligned}
$$

E. Addition and subtraction using Scientific Notation:

1. These mathematical operations can only be performed if they possess the same exponent value. For example:

$$
2.4 \times 10^{6}+5.3 \times 10^{6}=7.7 \times 10^{6} \quad \text { OR } 5.3 \times 10^{6}-2.4 \times 10^{6}=2.9 \times 10^{6}
$$

a. If they do not have the same exponent, then one of the numbers will need to be converted so that they do match.
$2.4 \times 10^{5}+3.1 \times 10^{3}=2.4 \times 10^{5}+0.031 \times 10^{5}=2.431 \times 10^{5}$
OR
$2.4 \times 10^{5}+3.1 \times 10^{3}=240.0 \times 10^{3}+3.1 \times 10^{3}=243.1 \times 10^{3}$
F. Multiplication using Scientific Notation:

1. The significant digits, of each number, are multiplied first.
2. Then the exponents are added together.

For example:

$$
\left(2.4 \times 10^{5}\right) \times\left(3.6 \times 10^{3}\right)=8.64 \times 10^{8}
$$

G. Division using Scientific Notation:

1. The significant digits are divided first.
2. Then the exponents are subtracted.

For example:
$\underline{2.45 \times 10^{23}}=4.3 \times 10^{10}$
5.65×10^{12}
Step one: $2.45 / 5.65=0.433$ (round to 0.43)
Step two: $23-12=11$
Step three: Move the decimal to the right to turn 0.43 into 4.3

Step four: Since you had to move the decimal to the right, you need to correct your exponent number to reflect that $\rightarrow 11$ becomes 10
*If you move the decimal to the right; then subtract that number of moves to the exponent.

* If you move the decimal to the left; the add that number of moves to the exponent

