Unit 1: Nature of Chemistry Content Outline: Scientific Measurement (1.3)

I. Quantity

A. This term is used to describe something that has magnitude, size, or amount.
B. This is not the same thing as measurement.

1. Measurement is a process that scientists perform to represent a specific unit of some object. For example, you measured the length of a piece of paper to be 11 inches, or you measured out 3 cups of salt.
2. A measurement nearly always has a number plus a unit.
II. The SI System of measurement used in science
A. SI stands for the French Le Système International d'Unités (International System of Measurement) that was globally accepted in 1960 at the General Conference on Weights and Measures in Sèvres, France.
3. It is used and recognized by all scientists around the world, despite the reluctance of Americans to adopt the system over the old English system of measurement.
B. The SI system is based upon 7 Fundamental Units of Measurement. They are:
4. Length (l)
a. Length is measured in meters (m).
5. Mass (m)
a. Mass is measured in grams (g).
i. Mass is measured using a scale or balance.
b. Mass is different from weight.
i. Weight a measure of the gravitational pull on matter (an object).
ii. Weight is measured on a spring scale and measure in Newtons after the great scientist Isaac Newton, who worked with gravity.
c. Weight can change from location to location (earth vs. moon); but mass does not change.
6. Time (t)
a. Time is measured in seconds (s).
7. Temperature (T)
a. It is measured in Kelvin (K).
i. To convert degrees Celsius (${ }^{\circ} \mathbf{C}$) to Kelvin:

$$
273 \mathrm{~K}+{ }^{\circ} \mathrm{C} \text {; for example } \rightarrow 273+27^{\circ} \mathrm{C}=300 \mathrm{~K}
$$

ii. To convert degrees Fahrenheit (${ }^{\circ} \mathbf{F}$) to degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$:

$$
\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9 \text {; for example } \rightarrow\left(78^{\circ} \mathrm{F}-32\right) \times 5 / 9=46 \times 5 / 9=25.6^{\circ} \mathrm{C}
$$

5. Amount of a given substance (n)
a. It is measured in moles (mol)
b. A mole is a quantity equal to the Formula Weight of a molecule but measured out in grams.
6. Electric Current (I)
a. Electric current is measured in Amps (A).

7. Luminosity (Iv)

a. Luminosity is measured in candelas (cd) Sounds like candles.
b. You can see this one on light bulb packages in stores. The more...the brighter.
C. Prefixes (Additions at the front of a word) for Magnitude (greater than 1): \rightarrow getting larger

1. $\operatorname{Deka}(\mathrm{da})=10$; therefore 1 dekameter $=10$ meters
2. Hector $(\mathrm{h})=100$; therefore 1 hectometer $=100$ meters
3. Kilo $(\mathrm{k})=1,000 ; 1$ therefore 1 kilometer $=1,000$ meters
4. Mega (M) $=1,000,000$ (1 million); therefore 1 Megameter $=1,000,000$ meters
5. Giga $(G)=1,000,000,000(1$ billion $)$; therefore 1 Gigameter $=1,000,000,000$ meters
6. Tera $(T)=1,000,000,000,000(1$ Trillion); therefore 1 Terameter $=1$ Trillion meters
D. Prefixes for portions (pieces) of a whole: \rightarrow getting smaller
7. $\operatorname{deci}(\mathrm{d})=1 / 10$; therefore 1 decimeter is $1 / 10$ of 1 meter.
8. Centi $(c)=1 / 100$; therefore 1 centimeter is $1 / 100$ of 1 meter.
9. Milli $(\mathrm{m})=1 / 1,000$; therefore 1 millimeter is $1 / 1,000$ of 1 meter.
10. Micro $(\mu)=1 / 1,000,000$ (millionth); therefore 1 micrometer is $1 / 1,000,000$ of 1 meter
11. Nano $(\mathrm{n})=1 / 1,000,000,000$ (billionth); 1 nanometer is 1 billionth of 1 meter.
E. Derived(made from the Fundamental) units:
12. Area (A)
a. Derived by Length (m) X Width (m).
b. Area is measured in square meters $\left(\mathrm{m}^{2}\right)$.
13. Volume (V)
a. Derived by Length X Width X Height
b. Volume is measured in cubic meters (m^{3}).
14. Density (D)
a. Derived by Mass divided by Volume ($\mathrm{m} / \mathrm{m}^{3}$)
b. Density is measured in Grams per Meter cubed ($\mathrm{g} / \mathbf{m}^{3}$)
15. Molar Mass (M)
a. Derived by Mass divided by amount of a substance (mole) $\rightarrow \mathrm{m} / \mathrm{mol}$
b. Molar mass is measured in Grams per Mole ($\mathrm{g} / \mathbf{m o l}$)
16. Molar Volume ($\mathbf{V}_{\mathbf{M}}$)
a. Derived by Volume divided by the amount of a substance (mole) $\rightarrow \mathrm{v} / \mathrm{mol}$
b. Molar Volume is measured in cubic Meters per Mole ($\mathbf{m}^{\mathbf{3}} / \mathbf{m o l}$)
17. Energy (E)
a. Derived from Force X length (m)
b. Energy is measured in Joules (J)
18. Pressure (P)
a. Derived from mass divided by meter/second squared $\rightarrow \mathrm{m} / \mathrm{m}^{\bullet} \mathrm{s}^{2}(\bullet=$ multiplied by $)$
b. Pressure is measured in Pascals (Pa) or Atmospheres (Atm.)
